and are concave functions. Since decomposes into sums of these two components, it too must be concave. Any extremum of a concave function is a maximum. This fact is used in statistical physics to find the equilibrium distribution of many-particle systems. See problem 2 on this exercise sheet.
\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
domain=0:2.7,
xlabel=$x$,
smooth,thick,
axis lines=center,
every tick/.style={thick},
legend style={cells={anchor=west}},
legend pos=north west]
\addplot[color=blue]{x*ln(x)};
\addplot[color=red]{x-1};
\legend{$x \, \ln(x)$,$x-1$}
\end{axis}
\end{tikzpicture}
\end{document}
#import "@preview/cetz:0.3.2": canvas
#import "@preview/cetz-plot:0.1.1": plot
#set page(width: auto, height: auto, margin: 8pt)
#let size = (8, 5)
#canvas({
plot.plot(
size: size,
x-min: 0,
x-max: 2.7,
x-label: $x$,
y-tick-step: 1,
x-tick-step: 0.5,
x-grid: true,
y-grid: true,
legend: "inner-north-west",
{
plot.add-hline(0, style: (stroke: 0.5pt))
plot.add-vline(0, style: (stroke: 0.5pt))
// x ln(x) function
plot.add(
style: (stroke: blue + 1.5pt),
domain: (0.01, 2.7), // avoid x=0 since ln(0) is undefined
samples: 100,
label: $x ln(x)$,
x => x * calc.ln(x),
)
// x-1 function
plot.add(
style: (stroke: red + 1.5pt),
domain: (0, 2.7),
label: $x-1$,
x => x - 1,
)
},
)
})