The Maxwell-Boltzmann distribution plotted at different temperatures reveals that the most probable velocity of ideal gas particles scales with the square root of temperature.
\documentclass{standalone}
\usepackage{pgfplots,siunitx}
\pgfplotsset{compat=newest}
\def\kB{1.38e-23} % Boltzmann constant
\def\mu{1.66e-27} % unified atomic mass unit/Dalton (symbols: m_u or Da)
\def\maxwellboltzmann#1{4 * pi * (\mu / (2 * pi * \kB * #1))^(3/2) * x^2 * exp(-\mu * x^2 / (2 * \kB * #1))}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
domain = 0:8000,
xlabel = {$v$ [\si{\metre\per\second}]},
ylabel = $P(v)$,
smooth, thick,
axis lines = left,
every tick/.style = {thick},
]
\addplot[color=red,samples=100]{\maxwellboltzmann{100}};
\addplot[color=yellow]{\maxwellboltzmann{300}};
\addplot[color=blue]{\maxwellboltzmann{1000}};
\legend{\SI{100}{\kelvin}, \SI{300}{\kelvin}, \SI{1000}{\kelvin}}
\end{axis}
\end{tikzpicture}
\end{document}
#import "@preview/cetz:0.3.2": canvas, draw
#import "@preview/cetz-plot:0.1.1": plot
#set page(width: auto, height: auto, margin: 8pt)
// Constants (in SI units)
#let k_B = 1.38e-23 // Boltzmann constant
#let m_u = 1.66e-27 // unified atomic mass unit
// Maxwell-Boltzmann distribution function
#let maxwell_boltzmann(x, T) = {
(
4
* calc.pi
* calc.pow(m_u / (2 * calc.pi * k_B * T), 3 / 2)
* calc.pow(x, 2)
* calc.exp(-m_u * calc.pow(x, 2) / (2 * k_B * T))
)
}
#canvas({
draw.set-style(
axes: (
left: (
tick: (
label: (offset: .3, angle: 90deg),
),
),
),
)
plot.plot(
size: (10, 6),
x-label: [$v$ (m/s)],
y-label: $P(v)$,
y-max: 0.7e-3,
x-tick-step: 2000,
y-tick-step: 2e-4,
y-format: y => calc.round(10000 * y, digits: 2),
legend: "inner-north-east",
x-grid: true,
y-grid: true,
legend-style: (stroke: .5pt),
{
// Add grid lines
plot.add-hline(0, style: (stroke: 0.5pt))
plot.add-vline(0, style: (stroke: 0.5pt))
// Plot distributions for different temperatures
for (temp, color) in ((100, red), (300, orange), (1000, blue)) {
plot.add(
style: (stroke: color + 1.5pt),
domain: (0, 8000),
samples: 150,
x => maxwell_boltzmann(x, temp),
label: str(temp) + " K",
)
}
},
)
})