String theory: Primary fields and radial quantization A time-ordered product of fields on the cylinder maps to a radially ordered product in the complex plane. This graphic visualizes how different times on the cylinder correspond to different times on the plane.
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}
\draw[dashed] (2.6,0) arc (-90:90:-0.5 and 1.5);% line 1
\draw[dashed] (1.4,0) arc (-90:90:-0.5 and 1.5);% line 2
\draw[->] (-0.5,0) arc (-90:90:-0.5 and 1.5);
\draw (0,0) -- (4,0);% bottom line
\draw (0,3) -- (4,3);% top line
\draw (0,0) arc (270:90:0.5 and 1.5);% left half of the left ellipse
\draw (4,1.5) ellipse (0.5 and 1.5);% right ellipse
\draw (0.6,1.5) node {$\tau_1$};
\draw (1.8,1.5) node {$\tau_2$};
\draw (-1.25,1.5) node {$\sigma$};
\draw[->] (0.5,-0.5) -- (3.5,-0.5);
\draw (2,-1) node {$\tau$};
\draw[->,thick] (5.0,1.5) -- (6,1.5);
\draw[dashed] (9,1.5) circle (0.8);
\draw[dashed] (9,1.5) circle (1.8);
\draw [->,domain=0:90] plot ({9 - 2.2*cos(\x)},{1.5-2.2*sin(\x)});
\draw (6.9,0.2) node {$\sigma$};
\draw (9.6,2.4) node {$\tau_1$};
\draw (10.4,3) node {$\tau_2$};
\node at (9,1.5) [circle,inner sep=1pt,fill=black] {};
\end{tikzpicture}
\end{document}
#import "@preview/cetz:0.3.4": canvas, draw
#import draw: line, content, circle, arc
#set page(width: auto, height: auto, margin: 8pt)
// Constants
#let arrow-style = (
mark: (end: "stealth", fill: black, scale: 0.7),
stroke: 0.8pt,
)
#canvas({
// Left side (cylinder)
// Vertical lines
arc(
(2.6, 0),
start: -90deg,
stop: -270deg,
radius: (0.5, 1.5),
stroke: (dash: "dashed"),
name: "tau2-arc",
)
arc(
(1.4, 0),
start: -90deg,
stop: -270deg,
radius: (0.5, 1.5),
stroke: (dash: "dashed"),
name: "tau1-arc",
)
arc(
(-0.4, 0),
start: -90deg,
stop: -270deg,
radius: (0.5, 1.5),
..arrow-style,
name: "sigma-arc",
)
// Labels
content("tau1-arc.mid", $tau_1$, anchor: "east", padding: 2pt)
content("tau2-arc.mid", $tau_2$, anchor: "east", padding: 2pt)
content("sigma-arc.mid", $sigma$, anchor: "east", padding: 2pt)
// Draw cylinder: Horizontal lines
line((0, 0), (4, 0), name: "bottom-line") // bottom
line((0, 3), (4, 3), name: "top-line") // top
// Left and right ellipses
arc(
(0, 0),
start: 270deg,
stop: 90deg,
radius: (0.5, 1.5),
)
circle(
(4, 1.5),
radius: (0.5, 1.5),
name: "right-ellipse",
)
// Bottom arrow and label
line((0.5, -0.5), (3.5, -0.5), ..arrow-style, name: "tau-arrow")
content("tau-arrow", $tau$, anchor: "north")
// Transformation arrow
line((5.0, 1.5), (6, 1.5), stroke: 1pt, ..arrow-style)
// Right side (plane)
// Dashed circles
circle((9, 1.5), radius: 0.05, fill: black, name: "center-dot")
circle((9, 1.5), radius: 0.8, stroke: (dash: "dashed"), name: "tau1-circle")
circle((9, 1.5), radius: 1.8, stroke: (dash: "dashed"), name: "tau2-circle")
// Quarter circle with arrow
arc(
"center-dot",
radius: 2.2,
start: -180deg,
stop: -90deg,
anchor: "origin",
..arrow-style,
name: "sigma-arrow",
)
// Labels
content("sigma-arrow.mid", $sigma$, anchor: "north-east", padding: 1pt)
content("tau1-circle.-15%", $tau_1$, anchor: "south-west")
content("tau2-circle.-15%", $tau_2$, anchor: "south-west")
})