This Feynman diagram corresponds to the integrand in this expression for
\documentclass[tikz]{standalone}
\usetikzlibrary{patterns,decorations.markings}
\tikzset{
cross/.style={fill=white,path picture={\draw[black]
(path picture bounding box.south east) -- (path picture bounding box.north west)
(path picture bounding box.south west) -- (path picture bounding box.north east);}},
dressed/.style={fill=white,postaction={pattern=north east lines}},
momentum/.style={->,semithick,yshift=5pt,shorten >=5pt,shorten <=5pt},
loop/.style 2 args={thick,decoration={markings,mark=at position {#1} with {\arrow{>},\node[anchor=\pgfdecoratedangle-90,font=\footnotesize] {$p_{#2}$};}},postaction={decorate}},
label/.style={thin,gray,shorten <=-1.5ex}
}
\def\lrad{1}
\def\mrad{0.175*\lrad}
\def\srad{0.15*\lrad}
\begin{document}
\begin{tikzpicture}[pin edge={shorten <=5*\lrad}]
% Loop
\draw[loop/.list={{0.125}{2},{0.125*3}{3},{0.125*5}{4},{0.125*7}{1}}] (0,0) circle (\lrad);
\draw[cross] (\lrad,0) circle (\srad) node[right=6pt] {$\partial_k R_{k,ij}(p_1,p_2)$};
\draw[dressed] (0,\lrad) circle (\srad) node[above=3pt] {$G_{k,jk}(p_2,p_3)$};
\draw[dressed] (0,-\lrad) circle (\srad) node[below=3pt] {$G_{k,li}(p_4,p_1)$};
% External line
\draw (-2*\lrad,0) -- (-\lrad,0) node[pos=0.4,below] {$\varphi_a$};
\draw[momentum] (-2*\lrad,0) -- (-1.25*\lrad,0) node[midway,above] {$q$};
% Vertex
\node (Gkakl) at (-2*\lrad,\lrad) {$\Gamma_{k,akl}^{(3)}(q,p_3,-p_4)$};
\draw[label] (Gkakl.-30) -- (-\lrad,0);
\draw[dressed] (-\lrad,0) circle (\mrad);
\end{tikzpicture}
\end{document}
#import "@preview/cetz:0.3.4": canvas, draw
#import "@preview/modpattern:0.1.0": modpattern
#import draw: line, content, circle, mark
#set page(width: auto, height: auto, margin: 8pt)
// Constants
#let radius = 1.2 // Increased for better spacing
#let med-rad = 0.175 * radius // \mrad
#let small-rad = 0.15 * radius // \srad
// Styles
#let arrow-style = (
mark: (end: "stealth", fill: black, scale: .5),
stroke: (thickness: 0.75pt),
)
#let label-style = (stroke: gray + 0.3pt)
#let hatched = modpattern(
(.1cm, .1cm),
std.line(start: (0%, 100%), end: (100%, 0%), stroke: 0.5pt),
background: white,
)
// Helper functions
#let cross(pos, label: none, rel-label: (6pt, 0), name: none, ..rest) = {
let txt = text(size: 16pt, baseline: -0.25pt)[$times.circle$]
content(pos, txt, stroke: none, fill: white, frame: "circle", padding: -2.7pt, name: name, ..rest)
if label != none {
content((rel: rel-label, to: pos), $#label$, anchor: "west")
}
}
#let dressed-vertex(pos, label: none, rel-label: (3pt, 0), name: none, radius: small-rad, ..rest) = {
circle(pos, radius: radius, fill: hatched, name: name, stroke: 0.5pt)
if label != none {
let label-pos = if rel-label != none { (rel: rel-label, to: pos) } else { pos }
content(label-pos, $#label$, ..rest)
}
}
#canvas({
// Main loop with momentum labels
circle((0, 0), radius: radius, stroke: 1pt, name: "loop")
// Add momentum arrows and labels around loop
for (ii, pos) in ((2, "0.125"), (3, "0.375"), (4, "0.625"), (1, "0.875")) {
let angle = float(pos) * 360
let label-angle = (angle - 3) * 1deg
// Add momentum labels
let rel-pos = (0.6 * radius * calc.cos(label-angle), 0.6 * radius * calc.sin(label-angle))
content(
(rel: rel-pos, to: "loop"),
$p_#ii$,
size: 8pt,
)
// Add arrow marks
mark(
symbol: "stealth",
(name: "loop", anchor: angle * 1deg),
(name: "loop", anchor: (angle + 1) * 1deg),
..(width: .25, length: .15, stroke: .7pt, angle: 60deg, scale: .7, fill: black),
)
}
// Add vertices with labels
cross(
(radius, 0),
label: $partial_k R_(k,i j)(p_1,p_2)$,
rel-label: (0.3, 0),
name: "regulator",
)
dressed-vertex(
(0, radius),
label: $G_(k,j k)(p_2,p_3)$,
rel-label: (0, 0.3),
name: "vertex-top",
)
dressed-vertex(
(0, -radius),
label: $G_(k,l i)(p_4,p_1)$,
rel-label: (0, -0.3),
name: "vertex-bottom",
)
// External line
line((-2.5 * radius, 0), (-radius, 0), stroke: 1pt, name: "external")
content((rel: (-0.6 * radius, -0.3), to: "external"), $phi_a$)
// External momentum arrow
line(
(-2.3 * radius, 0.15),
(-1.5 * radius, 0.15),
..arrow-style,
name: "q-arrow",
)
content((rel: (0, 0.3), to: "q-arrow.mid"), $q$)
// Vertex label with connecting line
content(
(-2.2 * radius, 1.2 * radius),
$Gamma_(k,a k l)^((3))(q,p_3,-p_4)$,
name: "gamma-label",
)
line(
"gamma-label",
(-radius, 0),
..label-style,
)
// Dressed vertex at external line connection
dressed-vertex(
(-radius, 0),
radius: med-rad,
name: "vertex-external",
)
})