« home

Saddle Point

mathconvexitycetztikz

This graph depicts a saddle point in three-dimensional space, which is a point in the domain of a function that is a local minimum in one direction and a local maximum in another. The depicted function F(T,V)F(T, V) is quadratic in TT and VV, and the graph shows the convex and concave nature of the function along different axes.


Saddle Point

  Download

PNGPDF

  Code

  LaTeX

saddle-point.tex (16 lines)

\documentclass[svgnames]{standalone}

\usepackage{pgfplots}
\pgfplotsset{compat=newest}

\begin{document}

\begin{tikzpicture}
  \begin{axis}[samples=30,ticks=none,xlabel={$V$},ylabel={$T$},zlabel={$F(T,V)$}]

    \addplot3[surf,color=DarkBlue,opacity=0.5,domain=-2:2,faceted color=black] {x^2-y^2};
  \end{axis}
\end{tikzpicture}

\end{document}

  Typst

saddle-point.typ (30 lines)

#import "@preview/plotsy-3d:0.1.0": plot-3d-surface

#set page(width: auto, height: auto)

#let saddle_func(x, y) = x * x - y * y

// Define a color function for the surface
#let color_func(x, y, z, x_lo, x_hi, y_lo, y_hi, z_lo, z_hi) = {
  return rgb("#00008B").transparentize(50%)
}

// Define domain and scaling
#let domain_size = 2
#let scale_factor = 0.2
#let (x_scale, y_scale, z_scale) = (0.5, 0.3, 0.15)
#let scale_dim = (x_scale * scale_factor, y_scale * scale_factor, z_scale * scale_factor)

// Plot the 3D surface
#plot-3d-surface(
  saddle_func,
  color-func: color_func,
  subdivisions: 8,
  xdomain: (-domain_size, domain_size),
  ydomain: (-domain_size, domain_size),
  // axis-labels: ($V$, $T$, $F(T,V)$), // Compiler error: Unexpected argument
  // axis-step: (1, 1, 2), // Adjust axis steps if needed
  // axis-label-size: 1.2em, // Adjust label size if needed
  // rotation-matrix: ((-2, 2, 4), (0, -1, 0)), // Optional: Adjust view angle
)