The Wetterich eqn. is a non-linear functional integro-differential equation of one-loop structure that determines the scale-dependence of the flowing action in terms of fluctuations of the fully-dressed regularized propagator . It admits a simple diagrammatic representation as a one-loop equation as shown in this diagram.
\documentclass[tikz,border={0 3}]{standalone}
\usetikzlibrary{patterns,decorations.markings}
\def\lrad{1}
\def\mrad{0.175*\lrad}
\def\srad{0.15*\lrad}
\begin{document}
\begin{tikzpicture}[
pin edge={shorten <=5*\lrad},
cross/.style={fill=white,path picture={\draw[black] (path picture bounding box.south east) -- (path picture bounding box.north west) (path picture bounding box.south west) -- (path picture bounding box.north east);}},
dressed/.style={fill=white,postaction={pattern=north east lines}},
momentum/.style 2 args={->,semithick,yshift=5pt,shorten >=5pt,shorten <=5pt},
loop/.style 2 args={thick,decoration={markings,mark=at position {#1} with {\arrow{>},\node[anchor=\pgfdecoratedangle-90,font=\footnotesize,] {$p_{#2}$};}},postaction={decorate}}
]
\draw[loop/.list={{0.25}{1},{0.75}{2}}] (0,0) circle (\lrad);
\draw[cross] (-\lrad,0) circle (\srad) node[left=2pt] {$\partial_k R_{k,ij}(p_1,p_2)$};
\draw[dressed] (\lrad,0) circle (\mrad) node[right=2pt] {$\bigl[\Gamma_k^{(2)} + R_k\bigr]_{ji}^{-1}(p_2,p_1)$};
\end{tikzpicture}
\end{document}
#import "@preview/cetz:0.3.4": canvas, draw
#import "@preview/modpattern:0.1.0": modpattern
#import draw: line, content, circle, mark
#set page(width: auto, height: auto, margin: 8pt)
// Define styles and constants
#let radius = 1.25 // \lrad in original
#let med-rad = 0.175 * radius // \mrad
#let small-rad = 0.15 * radius // \srad
// Create hatched pattern for vertices
#let hatched = modpattern(
(.1cm, .1cm),
std.line(start: (0%, 100%), end: (100%, 0%), stroke: 0.5pt),
background: white,
)
// Helper functions
#let cross(pos, label: none, rel-label: (0, 0), name: none, ..rest) = {
let txt = text(size: 16pt, baseline: -0.2pt)[$times.circle$]
content(pos, txt, stroke: none, fill: white, frame: "circle", padding: -2.75pt, name: name)
if label != none {
let label-pos = if rel-label != none { (rel: rel-label, to: pos) } else { pos }
content(label-pos, $#label$, ..rest)
}
}
#let dressed-vertex(pos, label: none, rel-label: none, name: none, radius: med-rad, ..rest) = {
circle(pos, radius: radius, fill: hatched, name: name, stroke: 0.5pt)
if label != none {
let label-pos = if rel-label != none { (rel: rel-label, to: pos) } else { pos }
content(label-pos, $#label$, ..rest)
}
}
#canvas({
// Main loop
circle((0, 0), radius: radius, stroke: 1pt, name: "loop")
// Add momentum arrows and labels around loop
for (ii, pos) in ((1, "0.25"), (2, "0.75")) {
let angle = float(pos) * 360
let label-angle = (angle - 3) * 1deg
// Add momentum labels
let rel-pos = (0.75 * radius * calc.cos(label-angle), 0.75 * radius * calc.sin(label-angle))
content(
(rel: rel-pos, to: "loop"),
$p_#ii$,
size: 8pt,
)
// Add arrow marks
mark(
symbol: "stealth",
(name: "loop", anchor: angle * 1deg),
(name: "loop", anchor: (angle + 1) * 1deg),
..(width: .25, length: .15, stroke: .7pt, angle: 60deg, scale: .7, fill: black),
)
}
// Add regulator cross with label
cross(
(-radius, 0),
label: $partial_k R_(k,i j)(p_1,p_2)$,
rel-label: (-0.25, 0),
name: "regulator",
anchor: "east",
)
// Add dressed vertex with inverse propagator
dressed-vertex(
(radius, 0),
label: $[Gamma_k^((2)) + R_k]_(j i)^(-1)(p_2,p_1)$,
rel-label: (0.25, 0),
name: "vertex",
anchor: "west",
)
})