« home

zT vs n

physicssolid state physicsthermodynamicscetztikz

Thermoelectric figure of merit zTzT vs carrier concentration nn for Bi2Te3 based on empirical data in αlnσ\alpha - \ln \sigma plot as a thermoelectric material performance indicator. Tuning nn for optimal zTzT involves a compromise between thermal conductivity κ\kappa, Seebeck coefficient SS and electrical conductivity σ\sigma. Increasing the electrical conductivity σ\sigma not only produces an increase in the electronic thermal conductivity κel\kappa_\text{el} but also usually decreases the Seebeck coefficient SS. This makes optimal zTzT difficult to achieve. Plot scales are κ[W/mK][0,10]\kappa [W / m K] \in [0,10], S[mV][0,500]S [mV] \in [0,500], σ[1/(Ωcm)][0,5000]\sigma [1/(\Omega cm)] \in [0,5000].


zT vs n

  Download

PNGPDFSVG

  Code

  LaTeX

zt-vs-n.tex (179 lines)

\documentclass[tikz]{standalone}

\usepackage{pgfplots,siunitx}

\pgfplotsset{compat=newest}

\begin{document}
\begin{tikzpicture}
  \begin{axis}[
      xmode=log,
      domain=1e17:1e21,
      ymax=1,
      enlargelimits=false,
      ylabel=$zT$,
      xlabel=Carrier concentration $n$ (\si{\per\centi\meter\cubed}),
      grid=both,
      width=12cm,
      height=8cm,
      decoration={name=none},
    ]
    \addplot [ultra thick, smooth, red!85!black] coordinates {
        (1.174e+18, 0.2317)
        (1.551e+18, 0.2787)
        (2.016e+18, 0.3300)
        (2.549e+18, 0.3816)
        (3.171e+18, 0.4332)
        (3.891e+18, 0.4842)
        (4.697e+18, 0.5373)
        (5.623e+18, 0.5892)
        (6.714e+18, 0.6404)
        (8.017e+18, 0.6923)
        (9.650e+18, 0.7450)
        (1.178e+19, 0.7963)
        (1.461e+19, 0.8486)
        (1.878e+19, 0.8964)
        (2.481e+19, 0.9278)
        (3.279e+19, 0.9318)
        (4.334e+19, 0.9057)
        (5.515e+19, 0.8571)
        (6.662e+19, 0.8045)
        (7.767e+19, 0.7519)
        (8.859e+19, 0.7000)
        (1.008e+20, 0.6476)
        (1.143e+20, 0.5953)
        (1.290e+20, 0.5449)
        (1.447e+20, 0.4906)
        (1.628e+20, 0.4374)
        (1.837e+20, 0.3850)
        (2.101e+20, 0.3327)
        (2.436e+20, 0.2799)
        (2.887e+20, 0.2281)
        (3.594e+20, 0.1753)
        (4.674e+20, 0.1271)
        (6.178e+20, 0.08917)
        (8.167e+20, 0.06240)
        (1e+21, 0.05)
      } node[pos=0.48, anchor=north] {$zT$};
    \addplot [ultra thick, smooth, blue!70!black] coordinates {
        (1.176e+18, 0.005689)
        (1.554e+18, 0.008070)
        (2.054e+18, 0.009285)
        (2.714e+18, 0.01216)
        (3.587e+18, 0.01561)
        (4.740e+18, 0.02190)
        (6.264e+18, 0.02984)
        (8.277e+18, 0.04013)
        (1.094e+19, 0.05127)
        (1.445e+19, 0.06820)
        (1.910e+19, 0.09120)
        (2.511e+19, 0.1191)
        (3.333e+19, 0.1593)
        (4.344e+19, 0.2072)
        (5.433e+19, 0.2587)
        (6.613e+19, 0.3123)
        (7.852e+19, 0.3739)
        (8.925e+19, 0.4266)
        (1.001e+20, 0.4779)
        (1.110e+20, 0.5310)
        (1.224e+20, 0.5824)
        (1.335e+20, 0.6359)
        (1.441e+20, 0.6893)
        (1.551e+20, 0.7425)
        (1.660e+20, 0.7960)
        (1.767e+20, 0.8478)
        (1.876e+20, 0.9009)
        (1.986e+20, 0.9532)
        (2.08e+20, 1)
      } node[pos=0.95, anchor=east] {$\sigma$};
    \addplot [ultra thick, smooth, green!70!black] coordinates {
        (1.175e+18, 0.08187)
        (1.553e+18, 0.08218)
        (2.053e+18, 0.08379)
        (2.713e+18, 0.08472)
        (3.585e+18, 0.08684)
        (4.738e+18, 0.08916)
        (6.261e+18, 0.09142)
        (8.274e+18, 0.09411)
        (1.093e+19, 0.09912)
        (1.445e+19, 0.1059)
        (1.909e+19, 0.1145)
        (2.523e+19, 0.1256)
        (3.334e+19, 0.1391)
        (4.405e+19, 0.1576)
        (5.821e+19, 0.1830)
        (7.691e+19, 0.2164)
        (1.016e+20, 0.2605)
        (1.302e+20, 0.3102)
        (1.589e+20, 0.3629)
        (1.882e+20, 0.4143)
        (2.181e+20, 0.4641)
        (2.472e+20, 0.5181)
        (2.764e+20, 0.5714)
        (3.066e+20, 0.6246)
        (3.363e+20, 0.6780)
        (3.669e+20, 0.7310)
        (3.981e+20, 0.7826)
        (4.273e+20, 0.8389)
        (4.560e+20, 0.8942)
        (4.868e+20, 0.9493)
        (5.2e+20, 1)
      } node[pos=0.95, anchor=west] {$\kappa$};
    \addplot [ultra thick, smooth, orange] coordinates {
        (1.65e+18, 1)
        (1.931e+18, 0.9729)
        (2.553e+18, 0.9248)
        (3.375e+18, 0.8777)
        (4.462e+18, 0.8302)
        (5.899e+18, 0.7816)
        (7.745e+18, 0.7351)
        (1.031e+19, 0.6866)
        (1.363e+19, 0.6397)
        (1.802e+19, 0.5897)
        (2.382e+19, 0.5412)
        (3.149e+19, 0.4937)
        (4.162e+19, 0.4471)
        (5.503e+19, 0.3977)
        (7.117e+19, 0.3500)
        (9.181e+19, 0.2944)
        (1.224e+20, 0.2436)
        (1.618e+20, 0.2019)
        (2.138e+20, 0.1687)
        (2.826e+20, 0.1389)
        (3.736e+20, 0.1161)
        (4.938e+20, 0.09646)
        (6.321e+20, 0.08022)
        (8.578e+20, 0.06624)
        (1e+21, 0.06)
      } node[pos=0.1, anchor=south west] {$S$};
    \addplot [ultra thick, smooth, cyan] coordinates {
        (1.159e+18, 0.04006)
        (1.532e+18, 0.04739)
        (2.025e+18, 0.05790)
        (2.676e+18, 0.06974)
        (3.386e+18, 0.08033)
        (4.675e+18, 0.09928)
        (6.179e+18, 0.1176)
        (8.168e+18, 0.1379)
        (1.080e+19, 0.1608)
        (1.427e+19, 0.1864)
        (1.886e+19, 0.2142)
        (2.492e+19, 0.2430)
        (3.294e+19, 0.2713)
        (4.353e+19, 0.2989)
        (5.754e+19, 0.3230)
        (7.605e+19, 0.3422)
        (1.005e+20, 0.3528)
        (1.314e+20, 0.3509)
        (1.757e+20, 0.3326)
        (2.327e+20, 0.3049)
        (3.071e+20, 0.2777)
        (4.061e+20, 0.2535)
        (5.369e+20, 0.2304)
        (7.098e+20, 0.2095)
        (1e+21, 0.185)
      } node[pos=0.4, anchor=south east] {$S^2 \sigma$};
  \end{axis}
\end{tikzpicture}
\end{document}

  Typst

zt-vs-n.typ (214 lines)

#import "@preview/cetz:0.3.2": canvas, draw
#import "@preview/cetz-plot:0.1.1": plot

#set page(width: auto, height: auto, margin: 8pt)

#canvas({
  draw.set-style(
    axes: (
      y: (label: (anchor: "north-west", offset: -0.2), mark: (end: "stealth", fill: black)),
      x: (label: (anchor: "north", offset: 0.1), mark: (end: "stealth", fill: black)),
    ),
  )

  plot.plot(
    size: (12, 8),
    x-label: [Carrier concentration $n$ ($"cm"^(-3)$)],
    y-label: $z T$,
    y-min: 0,
    x-mode: "log",
    x-tick-step: 1,
    x-grid: true,
    y-grid: true,
    // x-format: "sci",
    axis-style: "left",
    legend: "inner-north-east",
    {
      // zT curve (red)
      plot.add(
        style: (stroke: rgb(85%, 0%, 0%) + 2pt),
        (
          (1.174e18, 0.2317),
          (1.551e18, 0.2787),
          (2.016e18, 0.3300),
          (2.549e18, 0.3816),
          (3.171e18, 0.4332),
          (3.891e18, 0.4842),
          (4.697e18, 0.5373),
          (5.623e18, 0.5892),
          (6.714e18, 0.6404),
          (8.017e18, 0.6923),
          (9.650e18, 0.7450),
          (1.178e19, 0.7963),
          (1.461e19, 0.8486),
          (1.878e19, 0.8964),
          (2.481e19, 0.9278),
          (3.279e19, 0.9318),
          (4.334e19, 0.9057),
          (5.515e19, 0.8571),
          (6.662e19, 0.8045),
          (7.767e19, 0.7519),
          (8.859e19, 0.7000),
          (1.008e20, 0.6476),
          (1.143e20, 0.5953),
          (1.290e20, 0.5449),
          (1.447e20, 0.4906),
          (1.628e20, 0.4374),
          (1.837e20, 0.3850),
          (2.101e20, 0.3327),
          (2.436e20, 0.2799),
          (2.887e20, 0.2281),
          (3.594e20, 0.1753),
          (4.674e20, 0.1271),
          (6.178e20, 0.08917),
          (8.167e20, 0.06240),
          (1e21, 0.05),
        ),
        label: $z T$,
      )

      // σ curve (blue)
      plot.add(
        style: (stroke: rgb(0%, 0%, 70%) + 2pt),
        (
          (1.176e18, 0.005689),
          (1.554e18, 0.008070),
          (2.054e18, 0.009285),
          (2.714e18, 0.01216),
          (3.587e18, 0.01561),
          (4.740e18, 0.02190),
          (6.264e18, 0.02984),
          (8.277e18, 0.04013),
          (1.094e19, 0.05127),
          (1.445e19, 0.06820),
          (1.910e19, 0.09120),
          (2.511e19, 0.1191),
          (3.333e19, 0.1593),
          (4.344e19, 0.2072),
          (5.433e19, 0.2587),
          (6.613e19, 0.3123),
          (7.852e19, 0.3739),
          (8.925e19, 0.4266),
          (1.001e20, 0.4779),
          (1.110e20, 0.5310),
          (1.224e20, 0.5824),
          (1.335e20, 0.6359),
          (1.441e20, 0.6893),
          (1.551e20, 0.7425),
          (1.660e20, 0.7960),
          (1.767e20, 0.8478),
          (1.876e20, 0.9009),
          (1.986e20, 0.9532),
          (2.08e20, 1),
        ),
        label: $sigma$,
      )

      // κ curve (green)
      plot.add(
        style: (stroke: rgb(0%, 70%, 0%) + 2pt),
        (
          (1.175e18, 0.08187),
          (1.553e18, 0.08218),
          (2.053e18, 0.08379),
          (2.713e18, 0.08472),
          (3.585e18, 0.08684),
          (4.738e18, 0.08916),
          (6.261e18, 0.09142),
          (8.274e18, 0.09411),
          (1.093e19, 0.09912),
          (1.445e19, 0.1059),
          (1.909e19, 0.1145),
          (2.523e19, 0.1256),
          (3.334e19, 0.1391),
          (4.405e19, 0.1576),
          (5.821e19, 0.1830),
          (7.691e19, 0.2164),
          (1.016e20, 0.2605),
          (1.302e20, 0.3102),
          (1.589e20, 0.3629),
          (1.882e20, 0.4143),
          (2.181e20, 0.4641),
          (2.472e20, 0.5181),
          (2.764e20, 0.5714),
          (3.066e20, 0.6246),
          (3.363e20, 0.6780),
          (3.669e20, 0.7310),
          (3.981e20, 0.7826),
          (4.273e20, 0.8389),
          (4.560e20, 0.8942),
          (4.868e20, 0.9493),
          (5.2e20, 1),
        ),
        label: $kappa$,
      )

      // S curve (orange)
      plot.add(
        style: (stroke: orange + 2pt),
        (
          (1.65e18, 1),
          (1.931e18, 0.9729),
          (2.553e18, 0.9248),
          (3.375e18, 0.8777),
          (4.462e18, 0.8302),
          (5.899e18, 0.7816),
          (7.745e18, 0.7351),
          (1.031e19, 0.6866),
          (1.363e19, 0.6397),
          (1.802e19, 0.5897),
          (2.382e19, 0.5412),
          (3.149e19, 0.4937),
          (4.162e19, 0.4471),
          (5.503e19, 0.3977),
          (7.117e19, 0.3500),
          (9.181e19, 0.2944),
          (1.224e20, 0.2436),
          (1.618e20, 0.2019),
          (2.138e20, 0.1687),
          (2.826e20, 0.1389),
          (3.736e20, 0.1161),
          (4.938e20, 0.09646),
          (6.321e20, 0.08022),
          (8.578e20, 0.06624),
          (1e21, 0.06),
        ),
        label: $S$,
      )

      // S²σ curve (cyan)
      plot.add(
        style: (stroke: aqua + 2pt),
        (
          (1.159e18, 0.04006),
          (1.532e18, 0.04739),
          (2.025e18, 0.05790),
          (2.676e18, 0.06974),
          (3.386e18, 0.08033),
          (4.675e18, 0.09928),
          (6.179e18, 0.1176),
          (8.168e18, 0.1379),
          (1.080e19, 0.1608),
          (1.427e19, 0.1864),
          (1.886e19, 0.2142),
          (2.492e19, 0.2430),
          (3.294e19, 0.2713),
          (4.353e19, 0.2989),
          (5.754e19, 0.3230),
          (7.605e19, 0.3422),
          (1.005e20, 0.3528),
          (1.314e20, 0.3509),
          (1.757e20, 0.3326),
          (2.327e20, 0.3049),
          (3.071e20, 0.2777),
          (4.061e20, 0.2535),
          (5.369e20, 0.2304),
          (7.098e20, 0.2095),
          (1e21, 0.185),
        ),
        label: $S^2 sigma$,
      )
    },
  )
})